Mythos: Nur etwas für große Konzerne
Big Data bedeutet nicht primär, mit großen Datenmengen richtig umzugehen. Die wirklichen Herausforderungen in Sachen Big Data liegen darin, mit unterschiedlichsten Datenquellen und -formaten zu jonglieren sowie mit der wachsenden Geschwindigkeit zurechtzukommen, in der diese Daten entstehen und verarbeitet werden wollen. All diese Aspekte betreffen allerdings längst nicht nur große Unternehmen. Auch kleine und mittelgroße Firmen sehen sich vielfach mit diesen Problemen konfrontiert. Big-Data-Vorhaben müssen deshalb jedoch per se nicht so groß und komplex sein, dass nur Konzerne sie stemmen könnten, relativieren Experten.
Allerdings liesollten die Verantwortlichen darauf achten, sich mit ihren Big-Data-Projekten nicht zu verzetteln. Wer unsicher sei, wie Big Data behandelt werden sollte, oder skeptisch, inwieweit sich die damit verbundenen Investitionen rentierten, solle klein anfangen. So könnten Unternehmen in einem ersten Schritt einen Ausschnitt aus ihrem Datenbestand auswählen – strukturiert oder auch unstrukturiert.
Diese Daten sollten dann mit Hilfe eines Service oder eines Tools hinsichtlich einer Fragestellung ausgewertet und dann die Ergebnisse analysiert werden. Auf diese Weise könnten sich Unternehmen behutsam an das Thema herantasten, Erfahrungen sammeln und grundsätzlich prüfen, ob und in welchen Bereichen sich Aufwand und Investitionen für Big Data lohnten.
- Big Data in Zahlen
Karl Valentin hat einmal das Bonmot geprägt, schwer sei leicht was. Das kann man für den Trend Big Data mit Sicherheit auch behaupten. Sinnvoll in der Theorie, schwer in der Realisierung. Wir liefern ein paar Fakten. - Welche Probleme sehen Sie beim Einsatz von Big Data?
Big-Data-Konzepte werden nicht vorangetrieben, weil es an den richtigen Skills fehlt.<br> Angaben in Prozent; n = 206; Mehrfachnennungen möglich; Quelle: BARC
Mythos: Hauptziel Kunden-Management
Viele Big-Data-Anwendungsbeispiele drehen sich um das Management von Kundenbeziehungen. Daraus abzuleiten, Big Data eigne sich nur für bestimmte Bereiche oder Branchen, sei jedoch falsch. Die Gartner-Experten verweisen auf Umfragen, wonach Big-Data-Anwender andere Prioritäten setzen. Demnach stehe an oberster Stelle das Ziel, mit Hilfe von Big Data grundsätzlich sämtliche Prozesse im eigenen Unternehmen effizienter zu gestalten.
An zweiter Stelle rangiert das Thema Security. Big Data soll helfen, Risiken schneller und genauer zu identifizieren und damit Sicherheitslücken zu schließen. Erst an dritter Stelle der Big-Data-Prioritäten folgt das Kundenthema.
Darüber hinaus lasse sich die Big-Data-Thematik längst nicht nur auf Handelsunternehmen oder den Kundenkontakt beschränken, mahnen Experten. Neue Wege, mit großen Datenmengen umzugehen, hätten das Potenzial, verschiedenen Branchen Impulse zu geben. Energieversorger beispielsweise könnten auf Basis exakter Auswertungen des Energieverbrauchs ihre Produktion und Netzauslastung effizienter planen. Im Gesundheitswesen bietet Big Data die Chance, mit Hilfe von Patientendaten die Wirksamkeit von Behandlungen und Medikation zu analysieren und damit die Bekämpfung von Krankheiten zu unterstützen.
Mythos: Nur Analyse unstrukturierter Daten
Unternehmen, die Big Data auf Analytics und unstrukturierte Daten, beispielsweise Kommentare aus sozialen Netzwerken, reduzieren, liegen daneben. Analyseverfahren bilden nur einen Aspekt von Big Data – im Grunde den letzten Schritt. Dieser ist sicher entscheidend für das Ergebnis einer Big-Data-Frage. Wer jedoch die Vorarbeiten vernachlässigt, wird auch an der Analyse wenig Freude haben.
Dabei geht es vor allem darum, die richtigen Datenquellen zu identifizieren, ferner zu überlegen, wie sich daraus die wirklich relevanten Daten gewinnen lassen und wie diese in der Folge abgelegt und weiterbehandelt werden sollen. Big Data könne daher sehr schnell sehr komplex werden. Um dies zu verhindern, gelte es, Projekte möglichst klein und überschaubar zu halten.
Um die richtigen Daten für Big Data zu finden, müssen alle potenziellen Quellen einbezogen werden. Es wäre zu kurz gegriffen, sich auf die oft als Big-Data-Beispiel bemühten unstrukturierten Daten aus sozialen Netzen wie Facebook zu beschränken – zumal an dieser Stelle auch Privacy-Gesichtspunkte nicht unter den Tisch fallen dürfen. Auch andere Daten beispielswiese aus der Produktion, dem Einkauf oder der Lieferkette können wertvolle Hinweise liefern, wie sich das eigene Business effizienter und lukrativer abwickeln lässt.
- Big Data: Neue Berufsbilder
In den teilweise euphorischen Einschätzungen von Markforschern und IT-Unternehmen ist immer wieder die Rede von neuen Berufsbildern, die Big Data mit sich bringen soll. Dazu zählen unter anderem folgende Tätigkeiten: - Data Scientist
Er legt fest, welche Analyseformen sich am besten dazu eignen, um die gewünschten Erkenntnisse zu erzielen und welche Rohdaten dafür erforderlich sind. Solche Fachleute benötigen solide Kenntnisse in Bereichen wie Statistik und Mathematik. Hinzu kommen Fachkenntnisse über die Branche, in der ein Unternehmen beziehungsweise tätig ist und über IT-Technologien wie Datenbanken, Netzwerktechniken, Programmierung und Business Intelligence-Applikationen. Ebenso gefordert sind Verhandlungsgeschick und emotionale Kompetenz, wenn es um die Zusammenarbeit mit anderen Abteilungen geht. - Data Artist oder Data Visualizer
Sie sind die "Künstler" unter den Big-Data-Experten. Ihre Hauptaufgabe besteht darin, die Auswertungen so zu präsentieren, dass sie für Business-Verantwortliche verständlich sind. Die Fachleute setzen zu diesem Zweck Daten in Grafiken und Diagramme um. - Data Architect
Sie erstellen Datenmodelle und legen fest, wann welche Analyse-Tools Verwendung finden und welche Datenquellen genutzt werden sollen. Auch sie benötigen ein umfassendes Know-how auf Gebieten wie Datenbanken, Datenanalyse und Business Intelligence. - Daten-Ingenieur
Diese Aufgabe ist stark auf die IT-Infrastruktur ausgerichtet. Der Dateningenieur ist das Big-Data-Analysesystem zuständig, also die Hard- und Software sowie Netzwerkkomponenten, die für das Sammeln und Auswerten von Daten benötigt werden. Eine vergleichbare Funktion haben System- und Netzwerkverwalter im IT-Bereich. - Information Broker
Er kann mehrere Rollen spielen, etwa die eines Datenhändlers, der Kunden Informationen zur Verfügung stellt, oder die eines Inhouse-Experten, der Datenbestände von unterschiedlichen Quellen innerhalb und außerhalb des Unternehmens beschafft. Außerdem soll er Ideen entwickeln, wie sich diese Daten nutzbringend verwenden lassen. - Data Change Agents
Diese Fachleute haben eine eher "politische" Funktion. Sie sollen bestehende Prozesse im Unternehmen analysieren und anpassen, sodass sie mit Big-Data-Initiativen kompatibel sind. Nur dann lässt sich aus solchen Projekten der größtmögliche Nutzen ziehen. Wichtig sind daher ausgeprägte Kommunikationsfähigkeiten, Verständnis für Unternehmensprozesse sowie Kenntnisse im Bereich Qualitätssicherung und Qualitätsmanagement (Six Sigma, ISO 9000).
Mythos: Geeignete Fachkräfte fehlen
Die richtigen Mitarbeiter für Big Data zu finden ist zugegebenermaßen schwierig. Neben klassischen IT-Skills sollten Big-Data-Spezialisten Analytics-Kenntnisse mitbringen und sich darüber hinaus im Business und den Fachabteilungen auskennen. Doch Fachkräfte mit dieser Know-how-Kombination sind rar gesät, haben Umfragen gezeigt. Fast alle Unternehmen, die händeringend nach solchen Spezialisten suchen, geben an, dass die notwendigen Skills auf dem Arbeitsmarkt kaum zu haben sind.
Angesichts dieser Situation müssten die Unternehmen darauf achten, nicht jeden, der sich als Big-Data-Spezialist ausgibt, blindlings einzustellen, mahnt Gartner-Analystin Logan. Sie warnt vor voreiligen Entscheidungen: Trotz der angespannten Situation in diesem Arbeitsmarktsegment müssten Unternehmen Bewerber sorgfältig unter die Lupe nehmen, ob ihre angeblichen Fähigkeiten wirklich ausreichen, um die Herausforderungen zu meistern.
Auch sollten sich die Verantwortlichen nicht entmutigen lassen. Wer nicht fündig wird, könnte als Alternative ein Team zusammenstellen, schlägt Logan vor. Es könnte etwa aus einem IT-Spezialisten, einem Rechtsexperten sowie einem Mitarbeiter aus der Fachabteilung, der das Business kennt und versteht, bestehen. „Wenn man diesen Leuten Zugang zu Daten gibt und sie ein wenig herumspielen lässt, besteht durchaus die Chance, dass sie die eine oder andere interessante Entdeckung machen.“ (mhr)