Gartner prognostiziert, dass Unternehmen im laufenden Jahr für IT-Lösungen im Big-Data-Bereich 34 Milliarden Dollar ausgeben werden. Außerdem würden hier bis 2015 weltweit etwa 4,4 Millionen neue IT-Jobs entstehen, sagen die Analysten voraus.
Die Suche nach dem eigentlichen Problem
Angesichts dieser Zahlen möchte man meinen, dass von einem etablierten, in sich gefestigten Markt die Rede ist. Doch davon ist Big Data noch weit entfernt. Bei Big Data handle es sich immer noch um eine Lösung, die auf der Suche nach ihrem eigentlichen Problem ist, sagt Gartner-Analystin Debra Logan. Zwar zeigten sich die Unternehmen sehr darum bemüht, in ihren Datensilos nach wertvollen Einsichten für ihr Geschäft zu suchen. Außerdem seien bereits viele Firmen engagiert dabei, mit neuen Techniken zu experimentieren.
Trotz all dieser Aktivitäten bestehe die größte Big-Data-Herausforderung darin, herauszuarbeiten, welche Fragen mit Hilfe des neuen Ansatzes überhaupt beantwortet werden sollen. „Sie untersuchen es, sie fragen sich, was das alles bedeutet, sie wollen lernen – aber das alles befindet sich in einer sehr frühen Phase“, lautet Logans Fazit. So ist es nicht verwunderlich, dass sich rund um Big Data zahlreiche Mythen durch Markt und Branche ranken. Das macht für Unternehmen, die die richtige Big-Data-Lösung für ihre individuellen Probleme suchen, die Aufgabe nicht unbedingt einfacher.
Mythos: Antwort auf alle Datenprobleme
In vielen Industrien und Branchen suchen die Verantwortlichen derzeit nach Mitteln und Wegen, ihre wachsenden Datenbestände effizient zu verwalten und daraus Kapital zu schlagen. Dass dafür Big Data automatisch die richtige Antwort sein muss, sei aber längst nicht ausgemacht, stellt Gartner-Expertin Logan fest. Auch wenn es am Markt unzählige Programme für das Daten-Handling gebe, sei es in so manchem Fall die beste Lösung, einfach einige Daten wegzuwerfen.
„Nicht alle Daten bedeuten Kapital für die Unternehmen – und wenn sie kein Kapital sind, dann kosten sie Geld“, so Logans Bilanz. Die Verantwortlichen müssten also als Erstes entscheiden, was im Umfeld von Big Data sinnvoll sei. Das wiederum hänge maßgeblich davon ab, welche Fragen die Unternehmen beantwortet haben möchten. „Was kann eine große Datenmenge über ein Problem sagen, was ein kleinerer ausgewählter Satz an Daten nicht sagen kann?“ Allerdings, so schränkt die Gartner-Expertin ein, müssten sich Unternehmen an den gesetzlichen Rahmen halten.
In manchen Branchen, die strengen regulatorischen Vorschriften unterworfen seien, wie beispielsweise das Gesundheitswesen, verbiete es sich, Daten einfach wegzuwerfen. Wo es darum gehe, den eigenen Datenbestand auf seinen Wert für das Unternehmen zu prüfen, müssten IT und Fachabteilungen deshalb eng zusammenarbeiten.
- Trendthema Big Data
Von der Auswertung der riesigen Datenmengen, die täglich von IT-Systemen erfasst werden, versprechen sich Unternehmen, aber auch öffentliche Einrichtungen große Vorteile. - Vorteile von Big Data
Laut der Untersuchung von Barc erwarten sich Unternehmen von Big Data vor allem Vorteile auf strategischer Ebene. Doch das setzt voraus, dass Fachleute aus unterschiedlichen Bereichen Hand in Hand arbeiten: Business Manager, IT-Fachleute und Experten für das Sammeln und Auswerten von großen Datenbeständen. - Benno Zollner, Chief Information Officer von Fujitsu Technology Solutions
" Big Data Lösungen kombinieren Informationen aus unterschiedlichen Quellen und einer Vielzahl von Technologien. Deshalb müssen Big-Data-Fachleute interdisziplinäre Erfahrungen mitbringen." - Big Data: Wer analysiert?
Die Analyse der Daten, die im Rahmen von Big-Data-Projekten erfasst werden, erfolgt laut einer Studie von TCS vornehmlich durch die Fachabteilungen, die diese Informationen verwenden. Die IT-Abteilung spielt eine untergeordnete Rolle. - Kay Müller-Jones, Head of Global Consulting Practice bei Tata Consultancy Services:
"Neben technischen Fertigkeiten und fachlichem Wissen sollten Big-Data-Fachleute über ein hohes Maß an Fingerspitzengefühl im Umgang mit Kollegen verfügen. Denn gerade Big Data erfordert ein fachbereichsübergreifendes Denken, das Informationen aus vormals klar abgegrenzten Bereichen zusammenführt." - Big Data, die Probleme
Laut einer Studie des Marktforschungsinstituts Barc zählt fehlendes Fachwissen zu den größten Hemmnissen, mit denen sich europäische Unternehmen bei Big-Data-Projekten konfrontiert sehen. - Big Data: Wer ist zuständig?
Die Verarbeitung, das "Processing", von Big Data ist Aufgabe von IT-Fachleuten. Das können hauseigene Mitarbeiter sein, aber auch externe Spezialisten. - Analytische Infrastruktur für Big Data
Mythos: Im Kern (k)ein IT-Projekt
Die Tatsache, dass rund um Big Data viele technische Aspekte wie das Sammeln, Speichern und Auswerten von Daten im Vordergrund stehen, verleitet Unternehmen, entsprechende Projekte in der IT-Abteilung abzuladen. Doch mit dieser zu einseitigen Herangehensweise riskierten die Unternehmen, mit ihren Big-Data-Initiativen zu scheitern, warnen Experten.
„Wenn Sie mit Big Data wie mit einem IT-Projekt umgehen, dann ist ein Fehlschlag programmiert“, sagt Michael Chui, Principal beim McKinsey Global Institute. Deshalb müssten die Verantwortlichen von Anfang an auch das Business mit ins Boot holen. Dabei gehe es vor allem darum, schon im Vorfeld die Anforderungen der Fachabteilungen möglichst exakt zu definieren. Erst damit erhält die IT eine verlässliche Basis dafür, welche Techniken sinnvollerweise zum Einsatz kommen sollten. Genauso wäre es jedoch ein großer Fehler, die IT in Big- Data-Fragen nicht anzuhören. Gerade im Zeitalter von schnell und einfach zu buchenden Cloud-Services fühlt sich vielleicht der eine oder Fachanwender ermuntert, das Heft selbst in die Hand zu nehmen.
Das dicke Ende kommt allerdings spätestens dann, wenn es um Integrationsfragen geht – sei es, welche Datenquellen wie an den Big-Data-Service angebunden werden können oder wie Auswertungsergebnisse zurück in die eigenen IT-Systeme fließen können. Dann hat die IT wieder ein gewichtiges Wort mitzureden.