Drahtloses Netzwerk

WLAN: So sieht die Zukunft des Funknetzwerks aus

28.04.2014 von David Wolski
Kaum eine andere Technik hat die Art und Weise, wie Computer und Mobilgeräte verwendet werden, so stark verändert wie die WLAN-Funktechnik. Wir werfen einen Blick auf die Herkunft und die nahe Zukunft des drahtlosen 802.11-Funkstandards.

Die Stärke von Wireless LAN (WLAN) ist kabellose Konnektivität. Die Schwächen sind im Vergleich zum Kabel die schmale Bandbreite und die geringe Reichweite. Unschlagbar sind Drahtlos-Netzwerke aber überall da, wo es darum geht, Geräte mit wenig Aufwand zu vernetzen - speziell wenn diese nicht stationär an einem Ort wie dem Schreibtisch stehen.Geschwindigkeiten von WLAN-Standards

WLAN-Standard

Maximale Datenrate

Datendurchsatz netto (ohne Overhead)

Frequenzband

Jahr der Einführung

802.11

2 MBit/s

0,9 MBit/s

2,4 GHz

1997

802.11a

54 MBit/s

24 MBit/s

5 GHz

1999 (2007 überarbeitet)

802.11b

11 MBit/s

4,3 MBit/s

2,4 GHz

1999

802.11g

54 MBit/s

19 MBit/s

2,4 GHz

2003

802.11n

600 MBit/s

240 MBit/s

2,4 GHz/5 z

2009

802.11ac

1300 MBit/s

400 MBit/s

5 GHz

2014 (Final)

WLAN (WiFi) ist eine Sonderform von Ethernet und hat den gleichen Vorfahren, der vor 40 Jahren an der Universität von Hawaii in Betrieb ging: Das Alohanet diente dazu, verschiedene Außenstellen auf entfernten Inseln mit einem Zentralrechner auf der Hauptinsel Oahu zu verbinden. Anders als das ebenfalls im Aufbau begriffene Arpanet, Vorläufer des Internets, machte Alohanet die Netzwerkverbindung per Funkstrecke zu einem gemeinsam genutzten Übertragungsweg. Während im Arpanet eine Station nur mit einer anderen direkt über ein Kabel kommunizieren konnte, waren im Alohanet alle Teilnehmer auf einer gemeinsamen Frequenz zu einer Station verbunden - heute würde man dies den "Access Point" nennen. Eine weitere Besonderheit war die Hardware, die mit handelsüblichem Amateurfunk-Equipment realisiert wurde. Das verwendete Band umfasste eine Broadcast-Frequenz um 413,475 MHz und einen Datenkanal um 407 350 MHz. Darauf funkten alle Teilnehmer gleichzeitig und der Access Point erkannte dabei Paketkollisionen. Im Falle einer Kollision bekam die Sendestation keine Empfangsbestätigung und legte eine kurze Wartezeit zufälliger Länge ein, um das Paket noch einmal zu senden. So ließ sich immerhin schon eine Übertragungsrate von 9600 Bit/s erreichen.

Kanalaufteilung im 5-GHz-Spektrum: In Europa muss WLAN (802.11n und 802.11ac) auf diesen Frequenzen darauf achten, Wetterradar und Satellitenkommunikation nicht zu stören. Das Band ist deshalb stark reguliert.

Die 802.11-Standards für Funknetzwerke

Damit sich aus Alohanet ein Funkstandard für höhere Bandbreiten entwickeln konnte, war noch ein größeres Frequenzband erforderlich. 1985 erlaubte die US-Regulierungsbehörde FCC die lizenzfreie Nutzung von "schmutzigen" Bändern im Gigahertz-Bereich. Diese Frequenzen um 900 MHz, 2,4 GHz und 5 GHz wurden vordem kaum für Kommunikation verwendet. Zumal sich hier schon eine Menge Störsender befinden, beispielsweise Mikrowellenöfen und Babyphones. 1988 nutzte der Hardware-Konzern NCR das Spektrum, um Registrierkassen drahtlos zu verbinden, und daraus entstand schließlich der Standard IEEE 802.11. Um die Probleme mit den zahlreichen Störsendern im freien Frequenzspektrum zu umgehen, baut die Technologie auf Frequenzspreizung auf, die ein Signal auf einen größeren Frequenzbereich dehnt und damit weniger störanfällig macht.

Die technische Gestaltung des Funknetzstandards liegt beim Berufsverband der Elektrotechnik- und Elektronik-Ingenieure (IEEE) und ist dort Aufgabe der Arbeitsgruppen zu 802.11. Deren Spezifikationen unterliegen einer stetigen, wenn auch langsamen Weiterentwicklung.

Übersicht: Aufbau eines Funknetzwerks

WLAN unterstützt in den bisherigen Unterstandards 802.11a/b/g/n zwei Übertragungsmethoden: Infrastruktur-Netzwerk und Ad-hoc-Verbindungen. Im WLAN greifen Teilnehmer im Infrastruktur-Modus über einen zentralen Access Point auf das Netzwerk zu, im Heimnetzwerk üblicherweise der WLAN-Router. Dieser sendet an alle Geräte in Reichweite etwa zehn Mal in der Sekunde einen Beacon - den Herzschlag des Netzwerks. Dabei handelt es sich um ein passives Grundsignal, das Teilnehmern die Verfügbarkeit eines Funknetzwerks mitteilt, sowie Netzwerknamen (SSID), MAC-Adresse des Access Points, Angaben zur Übertragungsrate und Verschlüsselungsmethode.

Ad-hoc dient dazu, ohne zentralen Zugangspunkt direkt eine Verbindung zu einem anderen Teilnehmer aufzubauen, etwa für den Austausch einiger Dateien. Die Koordination aller Details wie Übertragungsrate und Verschlüsselung machen beide Teilnehmer direkt unter sich aus und informieren sich auch nicht über andere Geräte im Netzwerk. Die beiden Modi sind exklusiv, eine gleichzeitige Nutzung von Infrastruktur und Ad-hoc unterstützen die aktuellen Standards noch nicht.

Wenn die Funkverbindung steht, bekommen die verbundenen Geräte auf Netzwerkebene ihre IP-Adressen zugeteilt, falls ein DHCP-Server vorhanden ist, oder melden sich mit fester IP-Adresse an. Da in Funknetzen durch Störungen viele Übertragungsprobleme auftreten, geht ein nicht unerheblicher Teil der gesendeten Daten in die Fehlerkorrektur: Rund die Hälfte der Brutto-Datenrate geht für Redundanz und Übertragungswiederholung dahin.

Ausblick: Direktverbindung mit 802.11ad

Nicht für gemeinsame Drahtlos-Netzwerke, sondern für Punkt-zu-Punkt-Verbindungen wird parallel zu 802.11ac bereits der kommende Standard 802.11ad entwickelt. Obwohl sich die Bezeichnung nur in einem Buchstaben unterscheidet, geht es dem Standard mit dem griffigen Alias "WiGig" doch um etwas ganz anderes: 802.11ad soll USB- SATA- und HDMI-Kabel überflüssig machen und Geräte untereinander verbinden - über kurze Abstände.

Aus diesem Grund kommt bei dieser Übertragungstechnik zusätzlich zu 2,4 GHz und 5 GHz noch das lizenzfreie 60-GHz-Band zum Einsatz. Zusammen schaffen die drei Bänder über kurze Strecken eine enorme Datenrate bis zu 7 GBit/s. Die neue 60-GHz-Frequenz erlaubt hohes Tempo, bringt allerdings auch neue Probleme mit sich: Je höher die Frequenz, desto geringer die Reichweite und desto störanfälliger ist die Übertragung. Eine Person im Raum kann die Funkverbindung bereits deutlich dämpfen und Techniken wie etwa Beamforming sind daher Pflicht.

802.11ad soll bis zu zehn Meter funktionieren, und für Geräteverbindungen genügt diese Entfernung. Der Standard nutzt nicht wie 802.11ac eine Netzwerkinfrastruktur mit Access Point, sondern baut eine direkte Verbindung zwischen den Geräten auf. Seit 2009 arbeitet an dem Standard ein Industriekonsortium, dem unter anderem Marvell, Wilocity, Intel, Qualcomm und Broadcom angehören. Die komplette technische Spezifikation und erste Geräte sollen im Laufe des Jahres 2014 auf den Markt kommen. (hal)

WLANs Planen und Optimieren -
Site Survey I
Software-Programme wie AirMagnet WiFi Analyzer, Aruba Visual RF Plan, Ekahau Site Survey Pro, InSSIDer, Network Stumbler, Xirrus Wi-Fi Inspector können bei der Planung, Erweiterung und laufenden Verbesserung von WiFi-Netzen helfen.
Site Survey II
Die Ekahau Site Survey Software fragt den Funknetzplaner: Wie viele Laptops, Tablets, Smartphones sollen das geplante WiFi-Netz benutzen können? Wie viele Minuten pro Tag kommt jedes Gerät zum Internet-Surfen, für Emails, Video-Streaming, File Transfers, VoIP-over-WLAN-Telefonate, et cetera zum Einsatz? Daraus wird der Mengen-Bedarf an WLAN Access Points berechnet
Site Survey III
Je schwieriger sich die Location funktechnisch darstellt, desto aufwändiger wird die Ermittlung von Art und Menge der Access Points. Beim Virtual Site Survey liest man digitale Baupläne ein. Danach spuckt das Programm die WLAN-Bestell-Liste aus. Bei komplexen Fällen macht man einen Active Site Survey mit Probemessungen vor Ort. Kommen starke Funkhindernisse und Störquellen hinzu, dann wird die Location zusätzlich mit einem Spektrum-Analysator untersucht.
Site Survey IV
Je schwieriger sich die Location funktechnisch darstellt, desto aufwändiger wird die Ermittlung von Art und Menge der Access Points. Beim Virtual Site Survey liest man digitale Baupläne ein. Danach spuckt das Programm die WLAN-Bestell-Liste aus. Bei komplexen Fällen macht man einen Active Site Survey mit Probemessungen vor Ort. Kommen starke Funkhindernisse und Störquellen hinzu, dann wird die Location zusätzlich mit einem Spektrum-Analysator untersucht
Site Survey V
Befinden sich massive Funkhindernisse wie Stahlbeton-Pfeiler und Stahlschränke in der gewünschten Wireless-Location, dann können zahlreiche Funkschatten, Spiegelungen und Interferenzen entstehen, die sich nicht per Software allein aus den digitalen Bauplänen prognostizieren lassen .
Visual Site Survey
Hier wurde der Bauplan eines funktechnisch unkomplizierten Grossraumbüros in die Virtual Site Software Aruba Visual RF Plan eingelesen. Nach weiteren Angaben, etwa zur Raumhöhe und zur Art der Access Points, wird die Menge und Positionierung der Funkstationen für ein optimales WiFi-Netz berechnet
Visual Site Survey II
Im ersten Anlauf hat Aruba Visual RF Plan hier zehn Access Points mit etwas zu großen Funkzellen zur WiFi-Versorgung des eingescannten Großraumbüros vorgeschlagen. Links oben, links unten und rechts unten strahlen die APs weiter als nötig aus dem Büro hinaus. Das lässt sich aber händisch korrigieren.
Visual Site Survey III
Hier wurden einige Access Points von Hand weiter ins Großraumbüro herein gezogen, etwa links oben. Zudem wurden die Funkzellen der APs durch Absenkung der Sendestärken verkleinert. So wird die Kapazität des WiFi-Netzes präziser auf den gewünschten Versorgungs-Bereich innerhalb des Großraumbüros konzentriert
Visual Site Survey IV
Mit der Ekahau Site Survey Software entsteht eine Heatmap des Funknetzes: Die roten Stellen sind besonders gut mit WiFi-Funk versorgt, die blauen sind nur schwach ausgeleuchtet
Visual Site Survey V
Für private User gibt es den kostenlosen Ekahau HeatMapper zum Planen und Analysieren von WLAN Hotspots
Visual Site Survey VI
AirMagnet bietet eine Kollektion an WiFi-Analysatoren und WiFi-Planungs-Tools. In dieser Grafik ist der Signalstärke-Filter so eingestellt, dass die grünen Bereiche den Wünschen der Funknetz-Planer entsprechen. Die grauen Bereiche sind unterversorgt.
Passive Site Survey
Bei Lancom Systems kann der Funknetzplaner Spektral-Scans aus den Verkehrsdaten der Access Points erheben: Der Scan des Funkspektrums oben im Bild zeigt die Auslastung einzelner WLAN-Kanäle zu einem bestimmten Zeitpunkt. Das historische Wasserfall-Diagramm unten zeigt deren Auslastung in zeitlicher Abfolge .
Passive Site Survey II
Idealerweise legt man drei Access Points im gleichen Raume nicht auf die gleiche Frequenz, sondern verteilt ihre Sendepower auf drei möglichst weit voneinander entfernte Kanäle, etwa 1 und 6 und 11, damit es weniger Interferenzen gibt. Das gilt natürlich nur, sofern die Kanäle 1 und 6 und 11 überhaupt störungsfrei nutzbar sind. Ein Spektralscan kann bei der Störungsanalyse und optimalen Kanalverteilung helfen.
Aktive Site Survey
Das kostenlose WiFi-Messtool Network Stumbler zeigt recht schön, welche Access Points mit welchen MAC-Adressen am Standort des Testers gerade mit welchen Signalstärken und Signalqualitäten aktiv sind.
Site Survey mit Spektralanalyse
Hier untersuchten wir im WLAN-Hotspot der Messe München gerade das 900-MHz-Band nach GSM-900-Mobilfunk-Signalen mit einem mobilen, akkubetriebenen FSH4 Spectrum Analyzer von Rohde & Schwarz. Er kann das Frequenz-Spektrum von 100 kHz bis 3,6 GHz scannen, also auch die WLAN-b/g/n-Bänder bei 2,4 GHz, jedoch nicht die WLAN-a/n/ac-Bänder bei 5GHz.
Site Survey mit Spektralanalyse II
Hier untersuchten wir im WLAN-Hotspot der Messe München gerade das 2,6-GHz-Band nach LTE-2600-Signalen mit einem FSW Signal & Spectrum Analyzer von Rohde & Schwarz. Er kann ein umfangreiches Frequenz-Spektrum von 2Hz bis 8GHz scannen, somit auch die WLAN-b/g/n-Bänder bei 2,4GHz sowie die WLAN-a/n/ac-Bänder bei 5GHz .
Site Survey mit Spektralanalyse II
Bei Ekahau gibt es einen USB-Stick mit WLAN-Antenne. Er macht den Laptop zu einem Spektrum-Analysator, der dem Funknetz-Planer dabei helfen soll, WLAN-Interferenzen zu erkennen und auszumerzen.
Site Survey mit Spektralanalyse IV
Die Grafik von Ekahau zeigt eine Spektral-Analyse im 2,4GHz-Band über 13 WLAN-Kanäle hinweg.